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Abstract— Collaborative pattern mining is a pattern mining 
technique used in a distributed environment where each site 
participate collaboratively with one another for the discovery of 
patterns. Each individual site is capable of mining patterns and 
can communicate with other sites in the distributed 
environment. Currently existing work have failed to tackle 
various problems using this technique like effective data 
exchange and cross-site pattern pruning mechanisms. This 
paper advocates an effective method to perform pattern pruning 
in a distributive manner with the help of a data structure called 
Bloom Filter. With its help cross site pattern pruning can be 
performed with minimized data transfer between the sites as 
well as increased speed and with the capability of mining Local, 
Global and Inter-database Patterns. 

Keywords— Distributed data mining, Bloom Filter, Frequent item 
set, Distributed associative rule mining 

I. INTRODUCTION 

Pattern mining is the process of discovering patterns or 
relations that are present among data in very large dataset or 
database. The discovery of the patterns can help to 
understand the data better and we can make use of the 
knowledge discovered for future purposes. For many 
applications data is collected from various distributed sources 
and these sources may be distributed over different locations 
[3,4]. The amount of data will be huge and lot of processing 
and data transfer will be required in order to discover the 
patterns. 

From an association rule mining point of view ,past 
researches have made significant efforts to discover a variety 
of patterns such as frequent item-sets, temporal, spatial, 
and/or sequential association rules, closed patterns or 
sequential patterns. Common challenges that are faced in this 
area are: (1) identification of patterns from continuous 
volume of data or from large databases [13] (L- Patterns) and 
(2) discovery new patterns by unifying multiple databases 
into a single view[4,5] ( G-pattern mining ). In distributed 
databases, common goal is discover G-patterns, usually done 
by unifying multiple databases into a single view. Collective 
data mining [6] is a typical research work done in this area. A 
common way is find promising local candidates and sending 
them to a central site for synthesizing [7,8]. In situations 

where two or more companies/organizations agreed to share 
data for research for mutual gain but they are not willing to 
disclose all their sensitive data, so there should be some 
mechanism to share the essential data without compromising 
the data security. Hence there should be some efficient way 
to exchange data effectively along with a mechanism to 
monitor the data being shared.  

Patterns that can be discovered in a distributed environment 
are of three kind 1) Local Patterns (L-Pattern), 2) Global 
Patterns (G- Pattern), and 3) Inter-database Patterns (I- 
Pattern). Local Patterns [9] are those patterns that are local to 
a certain distributed site. Global patterns are those patterns 
that are present in all the distributed sites and inter-database 
patterns are the patterns that are present in more than one site 
but not all. Local and Global patterns can be found out with 
ease with already existing method but in-order to find Inter-
database patterns no efficient methods currently exists. 

II. RELATED WORK 

Mining of data in a distributed environment can be done 
in 3 ways, 1) Sequentially 2) Parallel and 3) Collaboratively. 
In sequential way, mining is performed in a sequential 
manner starting from the first site, discovering patterns as we 
move along to other sites one after the other. When the final 
site is reached the global patterns will discovered. This 
method is incapable of finding out inter-database patterns. In 
the parallel approach, there will a master site which will 
collect data from all the distributed sites and performs mining 
and returns the result to the user. The disadvantage with this 
approach is that there is the need of central site and in case 
when data mining is carried out for different companies with 
different requirements, there must be multiple master sites 
controlled by each company/organization for their own 
purposes. 

In the collaborative approach the distributive sites are capable 
of finding out patterns by their own. They will exchange 
message to communicate with other distributed sites. This is 
an effective technique to find out inter-database patterns and 
there is no need for a central site. The existing work using 
this technique is very less and their efficiency is also poor. 
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The information exchange is done in raw formats and hence 
the data transfer is more and cause for a bottleneck in the 
network. The challenges that we face using this method are 
absence of a system framework capable of mining 3 types of 
pattern, data exchange method to pass information between 
the distributed sites, type of mining procedure that should be 
used and pattern pruning mechanism. This paper proposes a 
method to exchange pattern information with other 
distributed sites effectively which is both fast and requires 
less data transfer also helps to perform pattern pruning 
between the sites easily. 

III. PROPOSED WORK 

 In collaborative pattern mining[15], pattern 
discovery is performed in a distributed manner with each 
distributed site carrying out pattern pruning in collaboration 
with its peers by using some pattern pruning mechanism. The 
pattern pruning mechanism this paper proposes is based on a 
data structure called Bloom Filter [10,11,12]. In this paper, 
frequent pattern mining[2] is used to perform mining and the 
using the patterns that are obtained at a distributed site pattern 
pruning is performed at other sites with the help of Bloom 
Filter. 

Bloom Filter is a probabilistic space efficient data 
structure that is capable of finding out whether an element is 
present in a set or not. It contains a m-bit array and k Hash 
Functions H1(.), H2(.) ... Hk(.).The strength of a BF test 
whether a given element is a member of a set in a very 
effective way [7,14]. Initially each element in the m-bit array 
is initialized as 0. Each hash function will take an element as 
input and the output will be a number between 0 and m 
indicating the position in the m-bit bit array and the value in 
the corresponding bit position will be changed to 1.  

 

Figure 1 : Bloom Filter Architecture 

If we want to add an element ‘x’ to the Bloom Filter, we use 
the k-Hash functions to hash the element and find k-positions 
in the array to be made as ‘1’.  In order to search for a 
particular element say ‘y’ in the bloom filter, we again uses 
the k-hash functions to find k positions and checks in the m-
bit array whether these k positions have value ‘1’. If all the k 

positions have the value ‘1’ then we can say that the element 
could be present in the set. If at least one of the k position has 
value as ‘0’, we can conclude that the element ‘y’ is not 
present in the set. False positives are possible but false 
negatives will not occur, hence we optimize the size of the 
bloom filter and the number of hash functions to reduce the 
false positive rate according to our application. 

Another feature of Bloom filters is that there is a clear 
tradeoff between the size of the filter and the rate of false 
positives. After the insertion of n keys into a boom filter of 
size m making use of k hash functions, the probability of a bit 
being still 0 is : 
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We assume that we use hash function that spread elements 
evenly across the space {1-m}. 

The probability of a false positive is: 
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In (2) perr is minimized for 2ln
n

m
k   hash functions.  In 

practice however, only a small number of hash functions are 
used.  The reason is that the computational overhead of each 
hash additional function is constant while the incremental 
benefit of adding a new hash function decreases after a 
certain threshold (see 2) .  

 

 

Figure 2: False positive rate as a function of the number 
of hash functions used.  The size of the Bloom filter is 32 
bits per entry (m/n=32).  In this case using 22 hash 
functions minimizes the false positive rate.  Note however 
that adding a hash function does 
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Figure 3: Size of Bloom filter (bits/entry) as a function of 
the error rate desired.  Different lines represent different 
numbers of hash keys used. Note that, for the error rates 

considered, using 32 keys does not bring significant 
benefits over using on 

 

(2) is the base formula for engineering Bloom filters.It 
allows, for example, computing minimal memory 
requirements (filter size) and number of hash functions given 
the maximum acceptable false positives rate and number of 
elements in the set (as we detail in 3). 
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The user will give a query according to which patterns are to 
discover. The client machine will distribute the query to each 
distributed site. And at each site the pattern mining takes 
place. 

 

Figure 3: Mining activities are carried out in distributed 
sites with bloom filter exchanged between sites for cross 

site pruning 

We make use of apriori[2] algorithm to discover the frequent 
patterns at the distributed site. At a given site the apriori 
algorithm will generate patterns with the help of data present 
at that distributed site, after the fining out the length-l 
patterns, a bloom filter will be created using those patterns 
and it will be broadcasted to other sites. At the receiving site, 
using the bloom filter pattern pruning will be carried out 
eliminating un-wanted patterns. In this way the sites will 
collaborative with one another in pruning and a finally a 
global pattern will be discovered at each site. Along with the 
global patterns relevant inter database patterns are also 
generated at that site. 

1. At site Si, use the Apriori mining approach to generate a 
complete set of length-l patterns. 

2. Using the frequent length-l patterns in site Sitei construct a 
bloom filter (BFi-l), and broadcast BFi-l to other distributed 
sites. 

3. After a distributed site Si receives the bloom filters BFj-l 
from other sites, it can query BFj-l and prune out length-l 
patterns in Si and then grow length-(l+1) patterns. 

4. Set l←l+1 and repeat Steps 2 to 4 until no more frequent 
patterns can be discovered from any sites 

The patterns that are discovered at the distributed sites will be 
send to the client site where the user can view the patterns. 
This method is asynchronous and hence each distributed site 
can work without synchronizing with other sites. Notice that 
bloom filter cannot encode support values of the patterns. 

IV. CONCLUSION 

In this paper, our aim is to mine patterns in a distributive 
environment and to discover Local, Global and Inter-database 
patterns. We have seen that the current researches focuses 
only on mining L- and G- Patterns. There is no effective 
method to mine all three types of patterns. Using the bloom 
filter technique we can effectively mine three types of 
patterns (L, G and I-patterns) in a collaborative manner with 
minimized data transfer between the sites. This mining 
technique has very little privacy concerns and requires low 
computational costs and memory consumption. Experimental 
comparisons demonstrated that this outperforms other simple 
methods. The problem addressed in this paper mainly focuses 
on frequent item-set mining. However, this method can be 
extended to handle other types of patterns as well such as 
constrained frequent item-sets, closed frequent patterns and 
sequential patterns. 
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