
A New Model for Multiparty Collaborative Distributed
Mining using Bloom Filter

Deepak Joshy1, Ms.PrinceMary2

1Student, 2Faculty of Computing,

Sathyabama University, India

Abstract— Collaborative pattern mining is a pattern mining
technique used in a distributed environment where each site
participate collaboratively with one another for the discovery of
patterns. Each individual site is capable of mining patterns and
can communicate with other sites in the distributed
environment. Currently existing work have failed to tackle
various problems using this technique like effective data
exchange and cross-site pattern pruning mechanisms. This
paper advocates an effective method to perform pattern pruning
in a distributive manner with the help of a data structure called
Bloom Filter. With its help cross site pattern pruning can be
performed with minimized data transfer between the sites as
well as increased speed and with the capability of mining Local,
Global and Inter-database Patterns.

Keywords— Distributed data mining, Bloom Filter, Frequent item
set, Distributed associative rule mining

I. INTRODUCTION

Pattern mining is the process of discovering patterns or
relations that are present among data in very large dataset or
database. The discovery of the patterns can help to
understand the data better and we can make use of the
knowledge discovered for future purposes. For many
applications data is collected from various distributed sources
and these sources may be distributed over different locations
[3,4]. The amount of data will be huge and lot of processing
and data transfer will be required in order to discover the
patterns.

From an association rule mining point of view ,past
researches have made significant efforts to discover a variety
of patterns such as frequent item-sets, temporal, spatial,
and/or sequential association rules, closed patterns or
sequential patterns. Common challenges that are faced in this
area are: (1) identification of patterns from continuous
volume of data or from large databases [13] (L- Patterns) and
(2) discovery new patterns by unifying multiple databases
into a single view[4,5] (G-pattern mining). In distributed
databases, common goal is discover G-patterns, usually done
by unifying multiple databases into a single view. Collective
data mining [6] is a typical research work done in this area. A
common way is find promising local candidates and sending
them to a central site for synthesizing [7,8]. In situations

where two or more companies/organizations agreed to share
data for research for mutual gain but they are not willing to
disclose all their sensitive data, so there should be some
mechanism to share the essential data without compromising
the data security. Hence there should be some efficient way
to exchange data effectively along with a mechanism to
monitor the data being shared.

Patterns that can be discovered in a distributed environment
are of three kind 1) Local Patterns (L-Pattern), 2) Global
Patterns (G- Pattern), and 3) Inter-database Patterns (I-
Pattern). Local Patterns [9] are those patterns that are local to
a certain distributed site. Global patterns are those patterns
that are present in all the distributed sites and inter-database
patterns are the patterns that are present in more than one site
but not all. Local and Global patterns can be found out with
ease with already existing method but in-order to find Inter-
database patterns no efficient methods currently exists.

II. RELATED WORK

Mining of data in a distributed environment can be done
in 3 ways, 1) Sequentially 2) Parallel and 3) Collaboratively.
In sequential way, mining is performed in a sequential
manner starting from the first site, discovering patterns as we
move along to other sites one after the other. When the final
site is reached the global patterns will discovered. This
method is incapable of finding out inter-database patterns. In
the parallel approach, there will a master site which will
collect data from all the distributed sites and performs mining
and returns the result to the user. The disadvantage with this
approach is that there is the need of central site and in case
when data mining is carried out for different companies with
different requirements, there must be multiple master sites
controlled by each company/organization for their own
purposes.

In the collaborative approach the distributive sites are capable
of finding out patterns by their own. They will exchange
message to communicate with other distributed sites. This is
an effective technique to find out inter-database patterns and
there is no need for a central site. The existing work using
this technique is very less and their efficiency is also poor.

Deepak Joshy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1095-1098

www.ijcsit.com 1095

The information exchange is done in raw formats and hence
the data transfer is more and cause for a bottleneck in the
network. The challenges that we face using this method are
absence of a system framework capable of mining 3 types of
pattern, data exchange method to pass information between
the distributed sites, type of mining procedure that should be
used and pattern pruning mechanism. This paper proposes a
method to exchange pattern information with other
distributed sites effectively which is both fast and requires
less data transfer also helps to perform pattern pruning
between the sites easily.

III. PROPOSED WORK

 In collaborative pattern mining[15], pattern
discovery is performed in a distributed manner with each
distributed site carrying out pattern pruning in collaboration
with its peers by using some pattern pruning mechanism. The
pattern pruning mechanism this paper proposes is based on a
data structure called Bloom Filter [10,11,12]. In this paper,
frequent pattern mining[2] is used to perform mining and the
using the patterns that are obtained at a distributed site pattern
pruning is performed at other sites with the help of Bloom
Filter.

Bloom Filter is a probabilistic space efficient data
structure that is capable of finding out whether an element is
present in a set or not. It contains a m-bit array and k Hash
Functions H1(.), H2(.) ... Hk(.).The strength of a BF test
whether a given element is a member of a set in a very
effective way [7,14]. Initially each element in the m-bit array
is initialized as 0. Each hash function will take an element as
input and the output will be a number between 0 and m
indicating the position in the m-bit bit array and the value in
the corresponding bit position will be changed to 1.

Figure 1 : Bloom Filter Architecture

If we want to add an element ‘x’ to the Bloom Filter, we use
the k-Hash functions to hash the element and find k-positions
in the array to be made as ‘1’. In order to search for a
particular element say ‘y’ in the bloom filter, we again uses
the k-hash functions to find k positions and checks in the m-
bit array whether these k positions have value ‘1’. If all the k

positions have the value ‘1’ then we can say that the element
could be present in the set. If at least one of the k position has
value as ‘0’, we can conclude that the element ‘y’ is not
present in the set. False positives are possible but false
negatives will not occur, hence we optimize the size of the
bloom filter and the number of hash functions to reduce the
false positive rate according to our application.

Another feature of Bloom filters is that there is a clear
tradeoff between the size of the filter and the rate of false
positives. After the insertion of n keys into a boom filter of
size m making use of k hash functions, the probability of a bit
being still 0 is :

 m

knkn

e
m

p








  1

1
10 . (1)

We assume that we use hash function that spread elements
evenly across the space {1-m}.

The probability of a false positive is:

 
k

m

kn
kkn

k
err e

m
pp 



























 


1

1
111 0

 (2)

In (2) perr is minimized for 2ln
n

m
k  hash functions. In

practice however, only a small number of hash functions are
used. The reason is that the computational overhead of each
hash additional function is constant while the incremental
benefit of adding a new hash function decreases after a
certain threshold (see 2) .

Figure 2: False positive rate as a function of the number
of hash functions used. The size of the Bloom filter is 32
bits per entry (m/n=32). In this case using 22 hash
functions minimizes the false positive rate. Note however
that adding a hash function does

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 4 7 10 13 16 19 22 25 28 31F
al

se
 p

os
iti

ve
s

 r
at

e
(l

og
 s

ca
le

)

Number of hash functions

Deepak Joshy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1095-1098

www.ijcsit.com 1096

Figure 3: Size of Bloom filter (bits/entry) as a function of
the error rate desired. Different lines represent different
numbers of hash keys used. Note that, for the error rates

considered, using 32 keys does not bring significant
benefits over using on

(2) is the base formula for engineering Bloom filters.It
allows, for example, computing minimal memory
requirements (filter size) and number of hash functions given
the maximum acceptable false positives rate and number of
elements in the set (as we detail in 3).
















k

perr

e

k

n

m
ln

1ln

 (bits per entry) (3)

The user will give a query according to which patterns are to
discover. The client machine will distribute the query to each
distributed site. And at each site the pattern mining takes
place.

Figure 3: Mining activities are carried out in distributed
sites with bloom filter exchanged between sites for cross

site pruning

We make use of apriori[2] algorithm to discover the frequent
patterns at the distributed site. At a given site the apriori
algorithm will generate patterns with the help of data present
at that distributed site, after the fining out the length-l
patterns, a bloom filter will be created using those patterns
and it will be broadcasted to other sites. At the receiving site,
using the bloom filter pattern pruning will be carried out
eliminating un-wanted patterns. In this way the sites will
collaborative with one another in pruning and a finally a
global pattern will be discovered at each site. Along with the
global patterns relevant inter database patterns are also
generated at that site.

1. At site Si, use the Apriori mining approach to generate a
complete set of length-l patterns.

2. Using the frequent length-l patterns in site Sitei construct a
bloom filter (BFi-l), and broadcast BFi-l to other distributed
sites.

3. After a distributed site Si receives the bloom filters BFj-l
from other sites, it can query BFj-l and prune out length-l
patterns in Si and then grow length-(l+1) patterns.

4. Set l←l+1 and repeat Steps 2 to 4 until no more frequent
patterns can be discovered from any sites

The patterns that are discovered at the distributed sites will be
send to the client site where the user can view the patterns.
This method is asynchronous and hence each distributed site
can work without synchronizing with other sites. Notice that
bloom filter cannot encode support values of the patterns.

IV. CONCLUSION

In this paper, our aim is to mine patterns in a distributive
environment and to discover Local, Global and Inter-database
patterns. We have seen that the current researches focuses
only on mining L- and G- Patterns. There is no effective
method to mine all three types of patterns. Using the bloom
filter technique we can effectively mine three types of
patterns (L, G and I-patterns) in a collaborative manner with
minimized data transfer between the sites. This mining
technique has very little privacy concerns and requires low
computational costs and memory consumption. Experimental
comparisons demonstrated that this outperforms other simple
methods. The problem addressed in this paper mainly focuses
on frequent item-set mining. However, this method can be
extended to handle other types of patterns as well such as
constrained frequent item-sets, closed frequent patterns and
sequential patterns.

REFERENCES
 [1] R. Agrawal, J.C. Shafer, Parallel mining of association rules, IEEE

Transactions on Knowledge and Data Engineering 8 (6) (December
1996) 962–969.

0

10

20

30

40

50

60

70

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

B
it

s
 p

er
 e

nt
ry

Error rate (log scale)

k=2

k=4

k=8

k=16

k=32

Deepak Joshy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1095-1098

www.ijcsit.com 1097

[2] R. Agrawal, R. Srikant, Fast algorithms for mining association rules,
Proc. of VLDB Conference, 1994.

[3] F. Provost, Distributed data mining: scaling up and beyond. In Kargupta,
H., Chan, P., eds.: Advances in Distributed and Parallel Knowledge
Discovery, MIT/ AAAI Press, 2000.

[4] S. Zhang, C. Zhang, X. Wu, Knowledge discovery in multiple database,
Springer,2004.

[5] M. Ashrafi, D. Taniar, K. Smith, ODAM: an optimized distributed
association rule mining algorithm, IEEE Distributed Systems Online 5
(3) (2004).

[6] H. Kargupta, B.H. Park, D. Hershberger, E. Johnson, Collective data
mining: a new perspective toward distributed data mining, Advances in
Distributed and Parallel Knowledge Discovery, MIT/AAAI Press,
Cambridge, MA, 1999.

[7] D. Cheung, V. Ng, A. Fu, Y. Fu, Efficient mining of association rules in
distributed databases, IEEE Trans. on Knowledge and Data
Engineering 8 (1996).

[8] X. Wu, S. Zhang, Synthesizing high-frequency rules from different data
sources, IEEE Transactions on Knowledge and Data Engineering 15 (2)
(2003) 353–367.

[9] X. Zhu, R. Jin, Y. Breitbart, G. Agrawal, MMIS-07, 08: mining multiple
information sources workshop report, ACM SIGKDD Explorations 10
(2) (2008) 61–65.

[10] A. Border, M. Mitzenmacher, Network applications of bloom filters: a
survey, Proc.of the 40th Annual Allerton Conf. on Communication,
Control, and Computing, Urbana-Champaign, Illinois, 2002, pp. 636–
646.

[11] B. Chazelle, J. Kilian, R. Rubinfeld, A. Tal, The Bloomier filter: an
efficient data structure for static support lookup tables, Proc. of the 5th
ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 30–39.

[12] S. Cohen, Y. Matias, Spectral bloom filters, Proc. of SIGMOD
Conference, 2003, pp. 241–252.

[13]S. Zhang, M. Zaki, Mining multiple data sources: local pattern analysis,
Data Mining and Knowledge Discovery 12 (2–3) (2006) 121–125.

[14] X. Gong, W. Qian, Y. Yan, A. Zhou, Bloom filter-based XML packets
filtering for millions of path queries, Proc. of ICDE Conference, 2005,
pp. 890–901.

[15] Xingquan Zhu, Bin Li, Xindong Wu, Dan He, Chengqi Zhang, CLAP:
Collaborative pattern mining for distributed information systems,
Decision Support Systems, Volume 52, Issue 1, December 2011, pp.
40–51

Deepak Joshy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1095-1098

www.ijcsit.com 1098

